Babitt, Jodie, MD

Phone: 617-726-0429
Lab: Babitt, Jodie


My laboratory is focused on elucidating the molecular and cellular mechanisms involved in iron homeostasis. Our ultimate goal is to identify new treatment strategies for disorders of iron homeostasis, such as the anemia of chronic disease and the iron overload disorder hemochromatosis.

Based on its ability to donate and accept electrons, iron is essential for many biological reactions important for living organisms including oxygen transport, cellular respiration, and DNA synthesis. However, this same property makes excess iron toxic by generating free radicals that can damage lipid membranes, proteins, and nucleic acids leading to cell death. As a result, iron levels must be tightly regulated both on a cellular level and systemically.

We have recently discovered that the bone morphogenetic protein (BMP) signaling pathway plays an important role in systemic iron balance by modulating expression of the main iron regulatory hormone hepcidin. A soluble protein secreted by the liver, hepcidin works by blocking the iron channel ferroportin, preventing iron release into the bloodstream from dietary sources and from iron storage cells. Hepcidin expression is induced by inflammation, which is thought to be part of the host defense mechanism to fight infection and cancer by limiting iron availability. However, in chronic inflammatory states, this leads to a deficiency of iron available for red blood cell production, and this is thought be one mechanism underlying the anemia of chronic disease. In contrast, hepcidin deficiency, which causes excessive dietary iron absorption and progressive tissue iron deposition and dysfunction, appears to be the common pathogenic mechanism underlying the iron overload disorder hereditary hemochromatosis.

Our lab has recently shown that 1) mutations in either the BMP co-receptor hemojuvelin or BMP6 ligand each lead to hepcidin deficiency and severe hemochromatosis; 2) iron regulates BMP ligand expression and BMP signal transduction in the liver; and 3) modulation of the BMP signaling pathway in vivo regulates hepcidin expression and systemic iron balance. Our current focus is working to understand the molecular and cellular mechanisms by which body iron levels are sensed and how this signal is transduced to modulate hepcidin expression and maintain systemic iron balance. We are also testing BMP-hepcidin pathway modulators as new treatment strategies for anemia of chronic disease and hemochromatosis.


   Sort by:
Eddowes LA, Al-Hourani K, Ramamurthy N, Frankish J, Baddock HT, Sandor C, Ryan JD, Fusco DN, Arezes J, Giannoulatou E, Boninsegna S, Chevaliez S, Owens BMJ, Sun CC, Fabris P, Giordani MT, Martines D, Vukicevic S, Crowe J, Lin HY, Rehwinkel J, McHugh PJ, Binder M, Babitt JL, Chung RT, Lawless MW, Armitage AE, Webber C, Klenerman P, Drakesmith H
Antiviral activity of bone morphogenetic proteins and activins.
Nat Microbiol. 2018;:ePub - PMID: 30510168 - DOI: 10.1038/s41564-018-0301-9
Wang CY, Babitt JL
Liver iron sensing and body iron homeostasis.
Blood. 2018;133(1):18-29 - PMID: 30401708 - PMCID: PMC6318427 - DOI: 10.1182/blood-2018-06-815894
Wang CY, Canali S, Bayer A, Dev S, Agarwal A, Babitt JL
Iron, erythropoietin, and inflammation regulate hepcidin in Bmp2-deficient mice, but serum iron fails to induce hepcidin in Bmp6-deficient mice.
Am J Hematol. 2018;94(2):240-248 - PMID: 30478858 - DOI: 10.1002/ajh.25366